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We present results from an experimental investigation into the fine-scale structure 
associated with the mixing of a dynamically passive conserved scalar quantity on the 
inner scales of turbulent shear flows. The present study was based on highly resolved 
two- and three-dimensional spatio-temporal imaging measurements. For the conditions 
studied, the Schmidt number (Sc = v /D)  was approximately 2000 and the local outer- 
scale Reynolds number (Re, = uS/v) ranged from 2000 to 10000. The resolution and 
signal quality allow direct differentiation of the measured scalar field <(x, t )  to give the 
instantaneous scalar energy dissipation rate field (Re Sc)-lV<. V<(x, t). The results 
show that the fine-scale structure of the scalar dissipation field, when viewed on the 
inner-flow scales for Sc 9 1, consists entirely of thin strained laminar sheet-like 
diffusion layers. The internal structure of these scalar dissipation sheets agrees with the 
one-dimensional self-similar solution for the local strain-diffusion competition in the 
presence of a spatially uniform but time-varying strain rate field. This similarity 
solution also shows that line-like structures in the scalar dissipation field decay 
exponentially in time, while in the vorticity field both line-like and sheet-like structures 
can be sustained. This sheet-like structure produces a high level of intermittency in the 
scalar dissipation field - at these conditions approximately 4 YO of the flow volume 
accounts for nearly 25 YO of the total mixing achieved. The scalar gradient vector field 
V c ( x , t )  for large Sc is found to be nearly isotropic, with a weak tendency for the 
dissipation sheets to align with the principal axes of the mean flow strain rate tensor. 
Joint probability densities of the conserved scalar and scalar dissipation rate have a 
shape consistent with this canonical layer-like fine-scale structure. Statistics of the 
conserved scalar and scalar dissipation rate fields are found to demonstrate similarity 
on inner-scale variables even at the relatively low Reynolds numbers investigated. 

1. Introduction 
The mixing of two or more fluid components at the molecular level in turbulent shear 

flows plays a dominant role in a wide range of practical problems, especially when 
chemical reactions occur between the constituents. Such problems can often be 
formulated in terms of an appropriately defined dynamically passive conserved scalar 
field quantity c(x,t). This refers to any identifiable scalar variable that is solely 
advected by the fluid and diffuses relative to the fluid, but which is neither created nor 
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destroyed within the flow and which does not directly affect the flow field. Examples 
include inert tracers such as dyes or molecular species being mixed in liquid or gaseous 
flows, the mixing of two or more inert fluid streams, or even, of particular interest for 
combustion problems, the evolution of elemental mixture fraction variables in 
chemically reacting flows. Often in engineering problems, the particular objective 
involves obtaining comparatively rapid rates of mixing, and for this reason practical 
problems generally focus on scalar mixing in turbulent flows. In many of these, and 
especially when a chemical reaction is involved, it is processes occurring at the 
molecular diffusion scales in the conserved scalar field that are crucial in determining 
the outcome of the mixing process. 

The investigation reported here is aimed at identifying the physical characteristics of 
the fine-scale structure associated with the molecular mixing of conserved scalars in 
turbulent flows. In particular, the results presented address the scalar mixing process 
in uniform-density turbulent flows and, consistent with this restriction, are confined 
only to the mixing of scalar quantities for which the diffusivity is constant. We are, 
furthermore, concerned solely with the mixing of dynamically passive scalar quantities, 
so that the evolution of the underlying velocity field is completely uncoupled from the 
progress of mixing in the scalar field. Finally, the work addresses only the molecular 
mixing due to gradients in the conserved scalar field, and does not deal with diffusion 
due to temperature gradients or pressure gradients, which can be important in certain 
specialized problems. 

The results presented are from highly resolved two- and three-dimensional spatio- 
temporal imaging measurements of the fine structure of large Schmidt number 
conserved scalar mixing in the fully developed self-similar far field of a turbulent shear 
flow. The spatial and temporal resolution of these measurements reach beyond the 
local strain-limited molecular diffusion scale of the flow, allowing spatial derivatives 
involved in determining the local instantaneous scalar gradient field V<(:(x, t )  to be 
accurately determined. The resulting two-dimensional scalar dissipation rate fields 
V<- V<(x, t )  are then examined to discern the underlying fine-scale structural features 
of the molecular mixing process in turbulent shear flows. 

The scope of this investigation is aimed principally at addressing four specific 
questions. First, is there any coherent fine structure associated with the molecular 
mixing of dynamically passive conserved scalar fields in turbulent flows? Secondly, 
what are the detailed features of any such characteristic underlying fine structure, and 
to what extent is this structure describable by simple canonical models? Thirdly, what 
is the effect of the Schmidt number of any underlying fine-scale structure in the scalar 
dissipation rate field in turbulent flows? In particular, is there any similarity in the fine 
structure for Sc % 1 and Sc z 1, and equally importantly, what differences are there in 
these two limits? This issue will be addressed by comparing the results obtained here 
for Sc % 1 with those obtained in a companion paper (Buch & Dahm 1996, hereafter 
referred to as Part 2) presenting analogous experimental results obtained at Sc z 1. 
Fourthly, what are the implications of this fine-scale structure of scalar mixing for the 
equilibrium structure of chemically reacting turbulent flows? 

The presentation is organized as follows. Section 2 of this paper summarizes a 
number of basic concepts essential to the present formulation of the molecular mixing 
process in turbulent flows. Section 3 briefly describes the experimental facility. 
Following this, $4 describes the measurement technique used, the spatial and temporal 
resolution achieved as well as the signal quality attained, and summarizes certain 
details of the data reduction procedures used. In $ 5  we then present results from these 
imaging measurements documenting the fine-scale structure for Sc 9 1, including 
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representative maps of the instantaneous conserved scalar and scalar dissipation fields, 
and identify the underlying canonical structural elements of the molecular mixing 
process. Certain statistics associated with the scalar mixing process are presented in 96, 
and in $7 we examine the internal structure of the canonical diffusion layers noted in 
$ 5 .  Finally, in 98  we discuss these results and summarize the major conclusions drawn 
from them. Additionally, two appendices provide certain peripheral analyses essential 
to the results presented here. 

2. Basic concepts 
Our treatment of mixing is in terms of a generic conserved scalar quantity 6, the 

precise physical meaning of which depends on the particular problem at hand. In this 
section, we summarize concepts associated with the dynamics of scalar fields that are 
essential to the formation adopted here, as well as in Part 2, and review several 
hypotheses concerning the fine structure of vorticity and scalar fields in turbulent flows. 

2.1. Dynamics of the scalar mixing process 
In any conserved scalar field <(x, t )  satisfying the requirements specified above, the 
local scalar value can change only through advection of the scalar by the fluid and 
molecular diffusion of the scalar relative to the fluid. Assuming a constant scalar 
diffusivity, the scalar field then satisfies the conservative advection-diffusion equation 

Re Sc 

Here, all variables are dimensionless through normalization by reference length and 
velocity scales, I* and u*, and reference scalar value <*. In (2.1), the only parameter 
appearing explicitly is the dimensionless scalar diffusivity (Re  Sc)-l, where Re Sc is the 
product of the Reynolds number Re = (u*l*/v) and the Schmidt number Sc = (v /D) ,  
with v and D the vorticity and scalar diffusivities, respectively. However, the velocity 
field u(x, t )  in (2.1) is governed by its own transport equation 

v .  u(x, t )  = 0, 

v x u(x, t )  = o(x, I ) ,  

Re 

(2.2a) 

(2.2b) 

(2.2c) 

where we have taken the fluid density and viscosity to be constant. Equation ( 2 . 2 ~ )  
introduces the Reynolds number separately and, as a consequence, the scalar field in 
(2.1) depends on both Re and Sc independently. 

If the normalization in (2.1) and (2.2) is by the local outer scales I* = S and u* = u 
which characterize the local mean shear in the flow, the resulting local outer-scale 
Reynolds number is Re, = (uS/v).  When viewed on these outer scales, the scalar field 
structure will be dependent on both Re and Sc. However, if the normalization is by the 
local inner scales I* = A, and u* = (v/A,), where A, - 13Re;~'~ is the local strain-limited 
vorticity diffusion lengthscale (see 9 7), then the resulting inner-scale Reynolds number 
is unity. In this case, provided the scale separation between the local inner and outer 
scales is sufficiently wide (i.e. provided Re, is sufficiently large), the velocity field in (2.1) 
and (2.2) should, when viewed on the inner scales, be independent of the outer-scale 
Reynolds number. Since the outer variables appear in (2.1) and (2.2) only through the 
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Reynolds number, u(x, t )  and <(x, t )  would therefore also be independent of the outer- 
scale variables and, furthermore, would also be independent of the particular turbulent 
flow. It is in this sense that the fine-scale structure of the mixing and energy dissipation 
processes, when viewed on the inner scales of high Reynolds number turbulent flows, 
are believed to be largely universal, that is independent of the Reynolds number and 
the particular flow. As a consequence, when viewed on the inner scales, the fine-scale 
structure of the conserved scalar field would then depend only on the Schmidt 
number Sc. 

Generally speaking, the inner scales of turbulent flows at Reynolds numbers 
sufficiently high for the scale separation to unequivocally allow this presumed universal 
structure to establish itself are beyond the reach of current experimental resolution 
capabilities. Ultimately, the finest experimental resolution attainable places a limit on 
the highest Reynolds number at which such fine structure measurements can be 
meaningfully made. In the experimental investigation undertaken here, the objective is 
to obtain very highly resolved measurements of the fine structure scales of the 
molecular mixing process in turbulent flows at conditions for which the Reynolds 
numbers are believed to be high enough that this universality is at least largely 
established. In this sense, the overall nature of the fine structure seen here, as well as 
its detailed features documented in these measurements, are believed to be largely 
generic to high Reynolds number conserved scalar mixing in turbulent flows, and not 
specific to the particular Reynolds numbers or the particular flows in which the 
measurements were obtained. 

To discern the fine structure of mixing in a conserved scalar field <(x, t),  it is useful 
to define the scalar energy per unit mass !jc(x, t ) ,  analogous to the kinetic energy per 
unit mass flul'(x, t). From (2.1) the scalar energy then follows the transport equation 

1 
Re Sc (x, t )  = --V<.V<(x, Re Sc t), 

where the same conservative advection-diffusion operator as in (2.1) appears on the 
left-hand side. The right-hand side is strictly negative, and gives the local instantaneous 
rate at which molecular diffusion reduces non-uniformities in the scalar energy field. 
For this reason, ~ ( x ,  t )  = (Re Sc)-l V<- V<(x, t )  is often referred to as the local 
instantaneous scalar energy dissipation rate per unit mass of fluid, or simply the scalar 
dissipation. 

From (2.1) the exact transport equation for the scalar gradient vector Vc(x, t )  
appearing in the dissipation on the right-hand side of (2.3) is 

Re Sc (2.4) 

where the same conservative advection-diffusion operator appears on the left. On the 
right, the first term describes the change in both magnitude and direction of the scalar 
gradient vector due to the local strain rate tensor E = f(Vu + VuT) associated with the 
underlying velocity field. The second term gives the pure rotation of the scalar gradient 
vector with the fluid vorticity in (2.2) but produces no change in the gradient 
magnitude. 

The scalar dissipation in (2.3) is simply the magnitude squared of the scalar gradient 
vector in (2.4), and therefore follows the transport equation 

a 1 1 
[% + u . v -- v2]f(v<-vo = -(V<.E.V~---V(V~):V(V~. (2.5) Re Sc Re Sc 
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In the first term on the right, the symmetric contraction simply selects the normal 
component of the strain rate tensor along the local scalar gradient vector direction, 
giving - E , ~ ~ V ~ - V L J .  The remaining components of the strain rate tensor thus act 
only to change the gradient vector orientation, but do not affect its magnitude. 
Therefore, this first term simply accounts for the reduction in scalar gradient 
magnitude due to extensional straining along the gradient direction or, conversely, the 
increase in dissipation resulting from compression of the scalar gradient. The second 
term on the right in (2.5) is strictly negative and gives the reduction in dissipation due 
to diffusional cancellation of gradients in the scalar field. 

The discussion above briefly outlines the dynamics governing the mixing process for 
an arbitrary conserved scalar quantity. In dealing with specific problems, sometimes 
the diffusivity D of the scalar quantity being mixed is small in comparison with the 
vorticity diffusivity v ;  in other words, the Schmidt number (Sc = v /D)  is large. 
Examples include the mixing of fine particles such as soot or oil droplets in the 
atmosphere, the mixing and reaction of aqueous acid-base solutions, or the mixing of 
various components in a wide range of liquid-phase chemical, pharmaceutical, and 
industrial processes. However, in many other problems of practical interest, the 
vorticity and scalar diffusivities are roughly the same, giving Sc M 1. Examples of this 
latter type include the mixing of two different inert gases and the evolution of the 
elemental mixture fraction in gaseous reaction flows. Here we address the fine-scale 
structure of the mixing of Sc + 1 conserved scalars; a companion paper (Part 2) 
addresses the fine structure of Sc M 1 conserved scalar fields. The remaining class of 
problems, namely those for which Sc 4 1, is also of interest in certain specialized 
problems, including mixing in plasmas, but is not addressed here. 

2.2. Fine-structure hypotheses for  the vorticity jield in turbulent j o w s  
The notion of a continuous cascade of kinetic energy in high Reynolds number 
turbulent flows from low-wavenumber velocity fluctuations toward increasingly 
isotropic higher wavenumbers, at which the energy is ultimately dissipated into heat, 
has been the cornerstone of turbulent flow theory since its earliest descriptions by 
Richardson (1920) and Taylor (1935). Kolmogorov (1941) placed this physical picture 
on a mathematical foundation by introducing the hypothesis of a universal isotropic 
homogenous statistical distribution for the small scales of high Reynolds number 
turbulent flows. While experimental results in a wide range of turbulent flows have 
corroborated some of the implications of Kolmogorov’s formulation, there is ample 
evidence that the predictions of this theory are incorrect for higher moments of the 
velocity differences. For example, from Kolmogorov’s formulation the normalized 
structure functions of all orders n and their corresponding spectra, when expressed in 
dissipation variables, should be universal for separation distances r within the inertial 
range. Instead, measurements at relatively high Reynolds numbers (e.g. Batchelor & 
Townsend 1949; Gibson, Stegen & Williams 1970; Van Atta & Chen 1970; Van Atta 
& Yeh 1975; Anselmet et al. 1984) imply a dependence on both n and r ,  especially for 
large values of n, suggesting that the vorticity and dissipation are distributed within the 
flow in a more ‘spotty’ manner than the space-filling distribution implicit in 
Kolmogorov’s (1941) formulation. 

Numerous modifications to Kolmogorov’s original hypothesis have been introduced 
to account for this spatial ‘spottiness’ of the vorticity and dissipation fields. These can 
be grouped into two types. The first are essentially probabilistic and centre on various 
largely ad hoe assumptions for the distribution of dissipation rates. These so-called 
intermittency models include, for example, the ‘ log-normal model’ of Kolmogorov 
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(1962), Obukhov (1962), Novikov & Stewart (1964), and Gurvich & Yaglom (1967); 
the ‘/I-model’ of Frisch, Sulem & Nelkin (1978); the ‘T-model’ of Andrews & 
Shivamoggi (1989); the ‘fractal model’ of Mandelbrot (1974, 1976); the ‘multi-fractal 
model’ of Frisch & Parisi (1985), Prasad & Sreenivasan (1990), Sreenivasan (1991), and 
Meneveau & Sreenivasan (1991); as well as various other ‘breakage models’. Borgas 
(1992) gives a critical review of the class of intermittency models. 

The second group, more directly relevant to the present work, consists of physically 
rooted models based on specific canonical pictures for vortical structure of the 
dissipative scales. Fine-structure models of this type can be traced back to Burgers 
(1948, 1950). He considered simple solutions for the fine structure of the vorticity field 
as sheets or lines of finite thickness established by a balance between the competing 
effects of strain and diffusion of vorticity. Townsend (1951) showed that sheet-like and 
line-like structures can evolve, from arbitrary initial vorticity distributions, as special 
cases for locally planar and axisymmetric strain rate fields. (The term ‘sheet-like’ will 
be used here to describe structural features that have one major dimension much 
smaller than the other two. By comparison, the term ‘line-like’ refers to features that 
have one major dimension much larger than the other two.) In both cases, the 
equilibrium vorticity thickness A, scales with the diffusivity v and the local compressive 
strain rate 6 as A, - ( V / C > ~ / ’ .  Townsend hypothesized that the fine-scale vortical 
structure of turbulent flows can be modelled as such sheets or lines passively 
superimposed on the mean flow, from which he computed the kinetic energy spectrum 
that would result from a random distribution of such vortex sheets, as well as the 
spectrum for a random distribution of vortex lines. A slightly better fit with 
experimentally measured spectra was obtained for the vortex sheet model, and 
Townsend argued that the strain rate field is more favourable to the formation of 
vortex sheets than vortex lines (see also Betchov 1956). Corrsin (1962) proposed a 
somewhat similar model in which the energy dissipation was localized in such 
randomly distributed vortex sheets, with thicknesses of the order of the Kolmogorov 
scale and separations of the order of the integral scale. Tennekes (1968) developed a 
similar model, but based on a random distribution of vortex lines having diameters of 
the order of the Kolmogorov scale and separations of the order of the Taylor scale. 

Direct experimental measurements of fine structure of the vorticity vector field in 
turbulent flows are beyond current laboratory diagnostic capabilities. However, Kuo 
& Corrsin (1972) made an early indirect attempt to experimentally assess these different 
fine-scale structure models of the dissipative scales in turbulent flows. From two-point 
measurements of velocity in a turbulent flow, they tried to distinguish among three 
canonical pictures for the underlying fine-scale vortical structure, namely ‘ sheets ’, 
‘lines’, and ‘blobs’. Their tentative conclusion was that the fine scales were more likely 
to be line-like than either sheet-like or blob-like. Betchov (1974), however, concluded 
from four-point measurements that the intermittency resulted from distorted vortex 
sheets, rather than vortex lines. More recently, using direct numerical simulations of 
moderate Reynolds number turbulent flows, many numerical studies have been 
undertaken to discern the fine structure of such flows. These have generally involved 
simulations of forced or decaying homogenous isotropic turbulent flow in periodic 
domains. In one of the earliest numerical studies, Siggia (1981) found numerous 
examples of vortex lines and sheets, as well as blobs, in the vorticity field. The highest 
values of vorticity were concentrated in line-like structures, in apparent agreement with 
Kuo & Corrsin’s earlier experimental results. Kerr (1985) also concluded from his 
simulation that the vorticity is concentrated in lines and not in sheets. Yamamoto & 
Hosokawa (1988) also found the regions of most concentrated vorticity confined to 
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line-like structures, with diameters of the order of the Kolmogorov scale and lengths 
typically of the order of the Taylor scale. This would appear to lend support to 
Tennekes’ model of the dissipative scales, but Yamamoto & Hosokawa caution that 
only a relatively small fraction of the total dissipation occurs within these line-like 
structures. She, Jackson & Orszag (1990) and others have also confirmed that the 
highest values of the vorticity are organized into such line-like structures, while lower 
values show no apparent structure. 

2.3. Fine-structure hypotheses for  the scalar field 
Not long after the introduction of Kolmogorov’s universal similarity hypotheses for 
the fine structure of the vorticity field in turbulent flows, it was recognized that certain 
aspects of this theory were applicable to the fine structure of scalar fields. Obukhov 
(1949) and Corrsin (1951) argued from this perspective that molecular diffusion would 
smooth gradients in the scalar field at scales smaller than the finest vortical scale, 
thereby setting the finest scalar and vorticity scales, A, and A,, equal. Batchelor (1959), 
however, recognized that when the scalar diffusivity D is significantly smaller than the 
vorticity diffusivity v, namely when Sc % 1 ,  the uniform strain rate E over regions 
much smaller than A, provides a mechanism for sustaining scalar gradients over 
lengthscales A, < A,. In this case, the limiting scale in the scalar field results from 
a competition between the compression due to the strain field and the thickening 
due to the diffusion of the scalar, giving A, N (D/e) l i2  with the consequence that 
A, = A,SC-~’~.  In contrast to this, when Sc < 1 Batchelor, Howells & Townsend 
(1959) suggested that the strain rate is irrelevant in setting the finest lengthscales in 
the scalar field. Gibson (1968a, b), on the other hand, argued on largely geometrical 
grounds that, regardless of the relevant magnitudes of v and D, the strain-diffusion 
competition always sets the finest lengthscale, giving A, N (D/e)’iz for all Sc. 

It is noteworthy that this picture of a strain-diffusion balance setting the finest 
lengthscale in the Sc >> 1 conserved scalar field is precisely the mechanism in Burgers’ 
and Townsend’s solutions of vortex sheets and lines as the canonical fine-structure 
elements for the vorticity field in high Reynolds number turbulent flows. As a 
consequence, these same canonical pictures of sheets and lines are also candidates for 
the fine structure of the Sc $- 1 conserved scalar fields. However, the possible relevance 
of these topologies for characterizing the scalar dissipation field in Sc z 1 turbulent 
mixing is much less obvious. In particular, when the Schmidt number is close to unity, 
the lengthscale A, on which gradients in the vorticity and strain rate fields occur is 
effectively the same as the lengthscale A, that would result from a strain-diffusion 
balance of the type described above. As a consequence, it might be expected that the 
assumption of a uniform strain rate field over regions significantly larger than A,, 
which is inherent in the line-like and sheet-like models, would not be valid under these 
conditions. Moreover, even if such a line-like or sheet-like scalar dissipation structure 
were to form momentarily, the fact that the vorticity is non-uniform over lengthscales 
of order the thickness of the structure suggests that it might quickly become distorted. 
It is thus much more difficult to argue on purely conceptual grounds that there should 
be any such simple structure in the dissipation field for Sc z 1 conserved scalars. 

As is the case for the vorticity field, there have also been a number of numerical 
simulations aimed at identifying the fine structure of scalar fields in turbulent flows. 
Such studies have dealt almost exclusively with Sc z 1 scalars, since then the resolution 
demands imposed by the finest gradient lengthscale arising in the scalar field are no 
more severe than those already imposed by the vorticity field. These simulations have 
also primarily addressed the mixing in homogenous isotropic turbulent flows in 
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periodic domains. One of the first such studies, by Kerr (1985), concluded that large 
values of the scalar gradient occurred in sheets wrapped around the line-like vorticity 
structures. Kerr also found that the scalar gradient tended to align normal to the 
vorticity and along the most compressive component of the strain rate. Ashurst et al. 
(1987) used Kerr’s simulation as well as computations by Rogers & Moin (1987) in a 
detailed study of the alignment between the vorticity, the scalar gradient, and the 
principal strain rate axes. In the vicinity of the line-like vortical structures, they 
observed that the strain field tended to be nearly two-dimensional, having large 
extensional and compressional principal components, with a significantly smaller 
intermediate component, that tended to be extensional. The vorticity showed a 
tendency to align with this intermediate component, corresponding to the most 
extensional component of the background strain field, while the scalar gradient 
strongly aligned with the most compressive component. From a two-dimensional 
inviscid simulation, Gibson, Ashurst & Kerstein (1988) showed that the scalar gradient 
tended to be largest in those regions where it most closely aligned with the largest 
compressive principal strain axis. Eswaran & Pope (1988) studied the decay of the 
scalar field in homogenous turbulent flow, and Yeung, Girimaji & Pope (1989) 
examined the statistics of a diffuse layer centred on a material surface advected with the 
flow. Their results indicate that, at early times, before the layer folds over onto itself 
and begins to interact with itself, the internal structure takes on a self-similar form. 

2.4. Previous Sc 9 1 conserved scalar measurements 

As was the case for the small scales in the vorticity field, experimental studies of the 
fine-scale structure of Sc 9 1 conserved scalar fields in turbulent flows have also been 
limited. This is primarily due to two obstacles. First, determination of the true 
scalar gradient vector field V<(x, t )  and the associated scalar dissipation rate field 
V<- V[(:(x, t )  requires simultaneous measurement of the conserved scalar field in all 
three spatial dimensions. Owing to the difficulties in making differentiable scalar field 
measurements in more than one or two dimensions, the dissipation has instead 
generally been approximated from measurements of lower-dimensional projections of 
the true scalar gradient field. Secondly, since the dissipation rate field is obtained from 
derivatives of the measurement conserved scalar field data, the resolution in both space 
and time, as well as the signal quality, must be sufficiently high to permit accurate 
differentiation of the measured data. 

An early attempt to simultaneously measure all three gradient vector components 
was made by Prasad & Sreenivasan (1990). They rapidly swept a laser sheet through 
a turbulent flow and acquired laser-induced fluorescence images at high speed to obtain 
a series of planar conserved scalar field measurements, estimating the separation 
between their resulting scalar field planes to be about four Kolmogorov scales. With 
Sc z 2000 in their measurements, this gives the interplane separation as 175 Batchelor 
scales. Based on their measurements (see their figures 14 and 15), these authors 
conclude that their scalar dissipation fields consist of local singularities of varying 
strengths, and thus describe these fields using multifractal analyses (e.g. Meneveau & 
Sreenivasan 199 1). The difficulties in resolving the smallest gradient lengthscales are 
typical of Sc 9 1 scalar field measurements, and have restricted most investigations of 
the fine structure of conserved scalar fields in turbulent flows to gaseous mixing, where 
Sc z 1 and thus the resolution requirements are not as severe. Accordingly, those 
investigations will be reviewed in Part 2. 

The present results are from very highly resolved measurements of the presumably 
universal fine structure of Sc 9 1 conserved scalar mixing in turbulent flows. These 
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experiments are based on two-dimensional laser-induced fluorescence imaging 
measurements, but the in-plane resolution achieved is significantly finer than the local 
scalar gradient lengthscale estimate in the flow. This addresses the second of the two 
obstacles mentioned above; however, the results obtained allow direct access to only 
two of the three gradient vector components. Nevertheless, in assessing various 
statistical features of the resulting scalar dissipation fields, this missing gradient 
component can still be accounted for by a general procedure (Dahm & Buch 1989). 

3. Experimental facility 
The present measurements of Sc 9 1 conserved scalar mixing were conducted in the 

self-similar far field of an axisymmetric coflowing turbulent jet at local outer-scale 
Reynolds numbers Re, ranging from 2000 to 10000. In this class of turbulent shear 
flows, a jet issues with momentum flux J ,  into an unconfined coflowing stream moving 
at a constant speed Urn. In these experiments, the local scalar field value c(x, t )  was 
defined as the jet-fluid mixture fraction, and determined from the aqueous 
concentration of an inert water-soluble laser fluorescent dye (disodium fluorescein) 
carried by the jet fluid. The Wilke-Chang method gives the diffusivity D for dilute 
aqueous solutions of this dye at room temperature as 4.82 x lop6 m2 s-l, and Ware 
et al. (1983) give a value of 5.2 x m2 s-l, giving respective values for the Schmidt 
number as 2075 and 1920. 

The coflowing turbulent jet was formed by issuing water containing a small amount 
of dye (typically around 3 x lop5 M) through a highly contracting contoured nozzle 
into a coflowing ambient stream. Both the jet and the ambient fluids were fixed to 
pH z 11 by the addition of NaOH. The flows were established in a low-turbulence- 
level gravity-driven blow-down Bernoulli tunnel with a 30 cm x 30 cm x 120 cm test 
section. The test section consisted of four 120 cm x 33 cm x 0.75 in. Lucite windows in 
a stainless steel frame with a 40 cm x 40 cm x 1.25 in. Lucite window on the bottom, 
allowing optical access on-axis as well as from all four sides. The upper reservoir was 
a 110 cm x 110 cm x 110 cm tank that emptied into a 240 cm x 120 cm x 90 cm lower 
reservoir through the test section. 

An 8 in. electro-pneumatically positioned butterfly valve controlled the flow through 
the test section. The valve angle was set by a current signal supplied to the valve 
controller from a 12-bit D/A board in a laboratory computer. To determine the time- 
varying valve angle necessary to maintain a constant velocity in the test section, the 
unsteady Bernoulli equation was solved using a calibration for the pressure drop across 
the valve as a function of the valve angle and flow rate, and the initial water levels in 
each reservoir. The resulting valve angle versus time was read from a file during each 
run to maintain a constant coflow velocity. LDV measurements showed that with this 
procedure the resulting test section velocity drifted no more than 5 % from the desired 
value over the entire run time. Test section velocities as low as a few millimetres per 
second and as high as 75 cm s-l could be established in this facility. The flow entered 
the test section through a rapid 11 : 1 area ratio contraction that effectively reduced the 
boundary layers at the test section entrance to negligible thickness. LDV measurements 
also determined the test section flow velocity fluctuations as a function of settling time 
in the upper reservoir. With increasing settling time, the turbulence intensity decreased 
below the 0.2 YO noise limit of the LDV. Longer settling times led to higher intensities, 
apparently due to thermal stratification in the upper reservoir. 

The jet plenum was a 4 in. ID x 41 in. Lucite cylinder with an end-plate containing 
a fitting for the pneumatic drive. The Lucite nozzle had a 5.5 in. overall length and a 
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5 mm interior exit diameter. The exterior of the nozzle was tapered to give a thin lip 
at the exit. The very large area ratio contraction (400: 1) yielded a uniform exit velocity 
profile that allowed calculation of the jet exit momentum flux J ,  directly from the 
measured mass flow rate in the plenum. A pneumatic drive system was used to issue 
the dye-containing plenum fluid through the nozzle. This consisted of a micrometer- 
controlled variable-throat metering valve held at sonic conditions with a constant 
upstream pressure that produced a constant and carefully controlled mass flow rate of 
air into the jet plenum. A solenoid valve was used to initiate the air flow into the 
plenum. A ballast tank, positioned upstream of the metering valve, maintained the 
upstream pressure during the starting transient. 

4. Diagnostic technique and experimental conditions 
4.1. The LIF measurement technique 

The jet-fluid mixture fraction was determined by measuring the intensity of laser- 
induced fluorescence from dye-containing fluid in a small region of the flow though 
which a collimated laser beam was rapidly swept. A 100mm Vivitar macro lens 
collected the fluorescence emitted by the dye at image ratios as low as 1 : 1. The 
fluorescence intensity was measured with a 256 x 256 high-speed planar photodiode 
array (EG & G Reticon MC9256/MB9000) having a centre-to-centre pixel spacing of 
40 pm. Figure 1 is a schematic representation of the data acquisition system used to 
collect and store the serial fluorescence output signal from the imaging array. The array 
was driven by an externally generated TTL clocking signal at pixel rates up to 11 MHz, 
corresponding to acquisition of up to 142 data planes per second. The serial analog 
output signal from the array formatter consisted of a sampled-and-held voltage 
proportional to the integrated fluorescence intensity incident on each pixel between 
successive samplings of the pixel. This signal then passed to a high-speed data 
acquisition system (RCI Trapix 55/256) via a programmable digital port interface. An 
8-bit A/D converter, using externally programmed gain and offset values, digitized the 
signal and ported it into 16 MB of high-speed dual-ported memory from which it was 
subsequently written to a disk. 

For the range of dye concentrations used in these experiments, the response of the 
dye is nearly linear, providing a direct relationship between the measured fluorescence 
signal and the dye concentration for a given local laser beam power. The spectrum of 
fluorescence emission was sufficiently separated from the laser excitation lines to allow 
Mie scattering from particles in the flow to be removed by an optical filtre [HOYA 
O(G)]. The multi-line emission (principally 488.0 nm and 514.5 nm) from a 5 W AT++ 
laser excited the dye fluorescence in the flow. The decay time of the resulting laser- 
induced fluorescence is of the order of nanoseconds, and thus much faster than any 
relevant fluid dynamic timescales associated with the turbulent flow or the scalar 
mixing process. The laser beam was focused to a waist at the centreline of the jet, and 
imaging measurements of the beam showed that the l /e beam thickness typically 
ranged from 115 to 130 pm over the entire extent of the measurement plane. 

Since each photodiode in the array integrated the dye fluorescence over the entire 
time between successive samplings of that pixel, the effective temporal resolution was 
greatly increased by sweeping the collimated laser beam through the flow rather than 
imaging from a fixed laser sheet. This reduced the effective integration time for each 
pixel to the time the beam spent in the pixel’s field of view - a reduction of more than 
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FIGURE 1. Schematic of the data acquisition system showing the photodiode array, timing signal 
path and image data path through the user-interface to the data storage system. 

FIGURE 2. Structure of the three-dimensional, 2563, spatio-temporal data volumes for the Sc % 1 
measurements. Each volume is composed of up to 256 individual two-dimensional spatial data 
planes, each containing 256 x 256 highly resolved point measurements of the local conserved scalar 
value 5. 

two orders of magnitude. A very low-inertia mirror mounted on a fast galvanometric 
scanner (General Scanning GA120DT) controlled the beam sweep through the 
measurement area. To avoid resonant oscillations of the mirrors, the scanner was 
driven by a frequency-limited ramp waveform from a programmable function 
generator, which in turn was slaved back to the master clock driving the photodiode 
array. 

The laser beam was attenuated along its propagation path through the scalar field 
as dye molecules in the flow absorbed energy from the beam and emitted a fraction of 
this as fluorescence. Since the fluorescence intensity is, in part, proportional to the local 
power of the laser beam, the local fluorescence intensity from any point in the scalar 
field depends not only on the local dye concentration but also on the integrated 
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Run designation Sc Re, s uS/v  J ,  (N) I/, (m s-') x (m) (x/8) 

A10279 2075 3500 0.006 0.025 1.0 18 
A09130 2075 2500 0.003 0.018 1.0 18 
A10070 2075 2100 0.009 0.18 1.0 106 
A10080 2075 2900 0.022 0.38 1.0 144 
A101 10 2075 9600 0.048 0.078 1.0 20 

TABLE 1. Experimental conditions for the Sc $ 1 experiments 

attenuation of the laser beam up to that point. This attenuation can be precisely 
accounted for if the true dye concentration is known at one point along each beam 
path, but no such dye reference location is available in these measurements. However, 
determination of the scalar gradient field involves only differences in the measured 
fluorescence intensity between adjacent pixels. Since the typical change in laser beam 
power due to attenuation from one pixel to the next is very small in comparison with 
the typical change in scalar value between pixels, the scalar gradient field V[(x, t )  could 
be accurately obtained even though the attenuation effects were ignored. As indicated 
in figure 2, each of these measurements produced a data volume composed of up to 256 
successive highly resolved two-dimensional spatial data planes arranged sequentially in 
time. Each data plane is, in turn, composed of an array of 256 x 256 individual point 
measurements of the local conserved scalar field value [(x, t). 
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FIGURE 4. Similarity scaling functions for the local jet width (S/9) and the local centreline excess 
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Biringen (1975). (a) Local outer scale width S(x), (b) local centreline excess velocity u(x). 
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4.2. Flow conditions 
Table 1 summarizes the flow conditions for which results are presented. All the data 
were collected at an axial distance of x = 1.0 m, corresponding to 200 jet nozzle exit 
diameters downstream of the source. In the proper dimensionless downstream 
similarity variable ( x / 8 )  for axisymmetric coflowing jets (see $4.3), this fixed axial 
distance corresponds to 18 6 ( x / 8 )  6 144, depending on the particular flow conditions. 
As a result, all of these measurement locations lie well within the fully developed self- 
similar far field of the flow and in between the jet-like and wake-like algebraic similarity 
limits (see 54.3). 

Figure 3 shows the approximate region in the flow covered by each data plane. Each 
plane was centred on the jet axis, with one spatial dimension corresponding to the axial 
flow direction and the other to the radial direction. It is essential to note that the region 
in the flow covered by each data plane is considerably smaller, in both directions, than 
the local jet width 6, and is typically of the order of the local strain-limited vorticity 
diffusion scale A,. For the results presented, the spatial extent of the data planes is as 
small as AS in both directions, and in no case are they larger than $8. With the local 
Reynolds number ranging from 2100 to 9600, the size of the data planes relative to the 
local inner scale ranges from 0.8 A, to 2.5 A,. As a result, provided these Reynolds 
numbers are high enough for a sufficient separation of scales to exist between the local 
outer and inner scales, S and A, respectively, the results obtained for the scalar 
dissipation rate field should be representative of the generic fine structure of large 
Schmidt number mixing in turbulent shear flows. 

4.3. Spatial and temporal resolution 

The result of any point measurement of the local conserved scalar field value is a 
spatio-temporal average representing the integral of the true scalar field values over the 
pixel volume A x x  Ay x Az and the time At during which the pixel collects the 
fluorescence from this volume. However, if the scalar field varies no more than linearly 
in space within this pixel volume, then from the mean value theorem, the measured 
average obtained will be equal to the true scalar field value at the centre of the 
measurement volume. If, furthermore, the scalar field also varies only linearly in time 
over the pixel integration period, then the resulting time average will be the true scalar 
field value at the centre of the integration period. Accurate point measurements of the 
scalar field thus require the spatial and temporal resolution corresponding to each 
pixel to be at least comparable to the smallest local length- and timescales on which 
gradients appear in the local conserved scalar field. 

The finest gradient lengthscale sustainable in the vorticity field results from a 
competition between the thinning effect of the local strain rate e and the thickening 
effect of molecular diffusion. Dimensional reasoning requires the local equilibrium 
lengthscale in the vorticity field established by this strain-diffusion balance to scale as 
A, (v /e) l I2 .  A similar strain-diffusion balance sets the finest lengthscale on which 
scalar gradients can be sustained by the flow, though in this case molecular diffusion 
occurs at the scalar diffusivity D, giving the strain-limited equilibrium lengthscale in the 
scalar field as A, - ( D / E ) ~ ’ ~ .  Exact self-similar solutions of the Navier-Stokes and 
conserved scalar transport equations, giving detailed descriptions of the strain- 
diffusion equilibrium processes in the vorticity and conserved scalar field, are 
presented in $7. Here we note only that, in response to a change in the local strain rate 
E ,  over a timescale of the order of the inverse strain rate the lengthscales A, and A, 
approach their new strain-limited values either exponentially in time from above or as 
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square root in time from below, thereby continuously tending to remain in equilibrium 
with the strain rate. 

In turbulent flows, the local strain rate t' will vary in both space and time, and 
classical inertial-range scalings indicate that the highest local strain rates should scale 
as t' - (u/S) Re:/'. Here, u and 6 are the local outer velocity and length scales that 
characterize the local shear in the flow. In the coflowing jet, these scales are the local 
flow width S(x) (defined here as the full width between the points where the mean scalar 
profile reaches 5 %  of the centreline value) and the centreline excess velocity 
u = ( U -  U,), respectively, as indicated in figure 3. This gives the smallest local 
lengthscales on which gradients can be sustained in the vorticity and scalar fields as 

AJS - Re;314, A,/$ - SC-'~' (4.1 a, b) 

Measurements by Dowling & Dimotakis (1991), as well as earlier estimates by Hill 
(1978, 1980), suggest that the proportionality constant is roughly 25. Note that with 
Sc z 2000 the finest gradient lengthscale that must be resolved in the conserved 
scalar field is approximately 45 times smaller than that in the vorticity field. 

Estimates for the spatial and temporal resolution requirements A, and A,/U, 
respectively, involve the outer-scale variables u and 6. In axisymmetric coflowing 
turbulent jets these variables follow non-algebraic far-field similarity scalings first 
noted by Maczynski (1962). These scalings can be easily understood by recognizing 
that as (u/Uoa) + 00, the effect of the coflow should become locally negligible and the 
flow should approach the scaling for an axisymmetric turbulent jet issuing into a 
quiescent medium. For this flow, the local jet width and centreline velocity are 

6 - x, u - (J,/p,)l" x-1, (4.2a, b) 

where J ,  is the jet source momentum flux and pm is the ambient fluid density. In the 
opposite limit, as (u/U,)+O, the momentum flux integral in terms of the excess 
velocity u = ( U -  U,) becomes identical to that obtained for wake in terms of the deficit 
velocity. In this case, self-similarity requires the simple algebraic scalings 

S / 8  - (x/8)1'3, u / u ,  - (x/&)-"'", (4.3 a, b) 

where 9 denotes the invariant momentum radius of the flow given by 

In terms of x / 8 ,  the wake-like limit in (4.3 a, b) corresponds to x / 8  + GO. At the other 
extreme, the jet-like limit in (4.2a, b) corresponds to x/8+0,  and can be written in 
terms of 9 as 

619 - x/9, u/u, - (x/&)-1. (4.5a, b) 

Equations (4.3) and (4.5) suggest that over the entire range 0 < x/9 < GO, the 
axisymmetric coflowing turbulent jet will follow a non-algebraic similarity scaling of 
the form 

618 - f,(xl*>, (4 Urn>-' - f , (x lW, (4.6a, b) 

with f, and f, satisfying these asymptotic limits. Measurements by Reichardt (1964) 
and Biringen (1975) have confirmed these scalings and give the functionsf, andf, as 
shown in figure 4. 
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Source momentum flux, J ,  (N) 

FIGURE 5. Spatial resolution map for the Sc 9 1 measurements. Shown are contours of constant local 
molecular diffusion scale A,, jet width 8, and local Reynolds number Re,. The shaded region denotes 
the conditions for which the molecular diffusion scale is smaller than the maximum dimension of each 
projected pixel volume in the flow. The limit on the jet width is to ensure that the unconfined scalings 
in $4.3 apply to the flow. 

A, Ax,Ay Az A,/U At AT 
Run designation (pm) (pm) (pm) (ms) (ms) (ms) 

A10279 246 80 250 5.8 0.14 8.5 
A09130 316 43 190 10.5 0.12 380 
A 10070 162 48 130 0.8 0.042 190 
A10080 111 48 130 0.27 0.042 190 
A101 10 111 50 130 0.87 0.17 760 

TABLE 2. Resolution estimates for the Sc + 1 experiments 

The scaling laws in (4.1) and (4.6) together with the scaling functionsf, andf, allow 
estimates to be obtained for the finest spatial and temporal scales, A, and A,/U 
respectively, arising in the scalar field <(x, t )  in terms of 4, U,, and x. Figure 5 shows 
the resulting spatial resolution constraints that these measurements must meet. Shown 
are contours of constant local outer-scale Reynolds number u6/v,  local flow width 6, 
and local strain-limited molecular diffusion scale A, at the measurement location 
x = 1 .0 m. The shaded area indicates the domain (4, U,) in which spatially resolved 
measurements can be obtained, constrained by the following criteria. The lower limit 
on Re is specified as 2000 and the upper limit on the jet width 6 is 20 cm to prevent 
interference from the test section walls. The minimum allowable A, is set by the laser 
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FIGURE 6. Temporal resolution map for the Sc $ 1 measurements. Shown are contours of constant 
local molecular diffusion scale advection time (h,/U), jet width S, and local Reynolds number Re,. 
The shaded region denotes the conditions for which the molecular diffusion scale is temporally 
resolved by each pixel measurement. 

sheet thickness Az, since this is the largest dimension of the measurement volume (see 
94.1). For each of the experimental conditions listed in table 1, the resulting spatial 
resolution estimates are listed in table 2. Note that the data are essentially spatially 
resolved (Ax ,  Ay < A,; Az z A,) in all the cases presented. 

Similarly, figure 6 gives the temporal resolution constraints on these measurements. 
Shown in this case are contours of the local molecular-diffusion-scale advection time 
A,/U, namely the characteristic time required for the flow to move one strain-limited 
scalar gradient lengthscale at the mean centreline velocity. Also shown are contours 
indicating the same constraints on the local Reynolds number and the local flow width 
as in figure 5.  The (4, U,) range over which temporally resolved measurements can be 
obtained is shown by the shaded area. For the experimental conditions listed in table 
1, the resulting temporal resolution estimates are also listed in table 2. Note that in each 
case the laser beam diameter, the sweep rate, the pixel size and image ratio set the 
effective time At over which each pixel is illuminated. Temporal resolution constraints 
require that At < A,/U, as is the case in all of these data. Note that the time AT 
between acquisition of successive data planes is also listed for comparison with the 
timescale h,/U. For all cases except that designated as A10279, the data between 
successively acquired planes were temporally uncorrelated (AT 9 A,/ U )  to permit 
statistical convergence of various quantitative measures of the mixing process. For the 
case denoted A10279, the inter-plane time is AT % h,/U to allow the temporal 
evolution of the mixing process to be examined. 
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4.4. Signal quality 
Accurate measurement of the conserved scalar field <(x, t )  requires not only high 
resolution but also a high signal-to-noise ratio. This is especially true for these 
experiments since the resulting data are to be differentiated to obtain the scalar 
gradient field V<(x,  t). For the present measurements, maximizing the signal-to-noise 
ratio requires maximizing the fluorescence intensity from the jet centreline at the given 
measurement location. Since the laser power and the jet width are fixed for each case, 
there is a single optimum dye concentration in the jet plenum that will produce the 
maximum mean fluorescence intensity. Specifically, the fluorescence intensity obtained 
at any point along the laser beam path is the product of the local dye concentration in 
the flow and the local laser beam power. The latter is coupled to the dye concentration 
through an exponential attenuation integral over the instantaneous concentration field. 
The integral nature of this dependence suggests that the mean concentration field could 
be used to provide an accurate estimate of the laser beam attenuation. The mean 
fluorescence intensity at the jet centreline is computed by this procedure to determine 
the local mean centreline concentration which maximizes the fluorescence. Since the 
mean concentration field is self-similar, for any given parameter values the resulting 
optimum local mean centreline concentration determines the required concentration in 
the jet plenum through the scaling functions f'(x/$) andf,(x/$). Following Dahm & 
Dibble (1988), the mean centreline scalar value is given by 

where the integrals fl and f, are given by 

(4.7) 

(4.8 a, b) 

with measurements yielding I, z 0.103 and I, z 0.254. This procedure gives the 
plenum dye concentration required to maximize the signal quality for any given flow 
conditions. 

Once this optimal dye concentration has been found, the signal-to-noise is then fixed 
by various noise sources inherent in the measurements and data acquisition system. In 
the present experiments, the limiting noise factor was the switching noise, or ktc  offset 
noise, which is proportional to the square root of temperature times the square root of 
capacitance in the array. This noise was typically about 3000 electrons, or 1 digital 
signal level. The dark noise, as measured for the array used, was less than 1 digital level. 
Other noise factors, including thermal noise, are all typically less than the switching 
noise. By comparison, for the dye concentration obtained by the procedure described 
above, the fluorescence signal values typically spanned the full 256 digital levels. 

4.5. Data reduction 

The raw fluorescence data resulting from data acquisition were first divided by a 
measured transfer function which collectively accounts for various non-idealities in the 
imaging system. For each case in table 1, this transfer function was determined from 
the average fluorescence intensity measured with a uniform weak dye concentration in 
the test section. The fixed array noise and any background signal were then subtracted 
from each of the corrected data planes. The background signal resulted from stray 
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fluorescence collected by the array while the beam was outside the measurement area, 
and was approximated from measurements with a uniform weak dye concentration in 
the test section. 

From the resulting scalar field data, the in-plane components of the scalar gradient 
vector field Vc(x, t )  were computed using linear central differences on a 3 x 3 template. 
For two-dimensional spatial data such as these, this can be done in two coordinate 
frames: one being the natural frame coincident with the pixel rows and columns, and 
the second being a rotation of the first through in. This allows two separate 
approximations for the gradient vector components, each of which makes use of the 
measured scalar field values at only four of the eight neighbouring points. Averaging 
the two approximations for each of the components then makes unbiased use of the 
scalar field values at all eight points. The resulting expression for the two-dimensional 
scalar dissipation at point ( i , j )  is 

where A is the centre-to-centre pixel spacing in the flow. Similarly, the in-plane scalar 
gradient vector orientation angle 9 is given by 

As is the case for any discrete derivative operator, this eight-point derivative template 
is equivalent to an implicit filter that offers the additional advantage 
of somewhat reducing the effects of noise on the gradient vector computations. 
However, aside from the implicit noise reduction inherent in this derivative, no explicit 
smoothing or filtering was applied to the resulting gradient vector fields. The results 
were then normalized by the local inner scales of the flow field, namely I* = A, and 
u* = (v/h,)  and themean scalar value obtained by averaging over the entire data volume, 
namely <* = 5,. 

5. Structure of the scalar and dissipation rate fields 
In this section, we present typical results for the conserved scalar fields <(x, t )  and the 

associated scalar dissipation rate fields ~ ( x ,  t )  = (Re Sc)-l Vc. V<(x, t )  obtained from 
these measurements. The discussion is aimed at identifying the underlying structural 
features characteristic of the scalar mixing process at the molecular diffusion level. In 
some instances, several examples are presented from a single experiment to give a 
clearer indication of the typical range of topological features seen in the dissipation rate 
fields. Quantitative analyses of these fields are given in subsequent sections. 

5.1. Sample fields 

Figures 7-13 show typical data planes obtained for each of the measurement 
conditions listed in tables 1 and 2. In each figure, part (a)  shows an example of an 
instantaneous conserved scalar field c(x, t ) ,  part (b) shows the corresponding map of 
the scalar energy dissipation rate field x(x, t )  obtained from the in-plane projection of 
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the true scalar gradient vector field, and part (c) shows the scaled logarithm of the 
scalar energy dissipation rate field log, x(x, t). The logarithmic maps provide more 
contrast at the low dissipation rates, allowing the structure to be more readily seen, 
while the linear maps provide a better view of the ‘spottiness’ of the dissipation rate 
fields. 

In all these figures, the jet centreline runs vertically down the centre of each data 
plane, though the fact that no consistent directional preferences are apparent in these 
fields suggests that they are at least approximately isotropic. (This issue is addressed 
quantitatively in $6). The axes indicate the spatial extent of each data plane in terms 
of the local strain-limited vorticity diffusion lengthscale A,, obtained as described in 
$4.3. Note that the relative size of these maps in terms of the local inner variables (x /A , )  
and (y /A,)  is different for each case. A comparison of the relative sizes of the inner 
lengthscale estimates A, show reasonable agreement with ‘ eddy-like ’ structures in the 
scalar and dissipation fields. Note that the vorticity field structure can of course at best 
be only qualitatively approximated from the scalar and dissipation field structures seen 
in these figures; however, the time development afforded by AT z (A,/u) in case 
A10279 allows some insight into the local dynamics of the flow, and verifies that such 
intuitive vortical lengthscale estimates inferred from the dissipation field structure in 
these figures are at least roughly correct. Related to this, it should be noted that 
estimates of the relative local outer-flow scale 6 among all these cases were also in good 
agreement with the values predicted by the scaling laws in $4.3, suggesting that the flow 
followed the far-field similarity scalings for axisymmetric turbulent coflowing jets, and 
therefore also the resulting Reynolds number scalings. 

In each part of figures 7-13, the colour bar identifies quantitative values for the 
variable shown. For the conserved scalar fields C(x, t),  each of the 256 different colour 
levels denotes a narrow range of the local instantaneous conserved scalar value in the 
flow. In each case, pure blue denotes the lowest range of scalar values, beginning at 
6 = 0 and corresponding to pure ambient fluid. The colours ranging from blue to red 
denote uniformly increasing conserved scalar values, with pure red denoting the 
highest 0.1 YO of scalar values seen in that particular data volume. Similarly, for the 
scalar dissipation rate fields ~ ( x ,  t) ,  pure blue denotes the lowest range of dissipation 
values, beginning at x = 0, with the remaining 255 colours ranging from pure blue to 
pure red denoting linearly increasing dissipation rates. The highest 0.1 YO of the 
dissipation rates in the data volume are all mapped to pure red. For the logarithm of 
the dissipation rate field, log, x, the lowest level (pure blue) denotes zero and very low 
dissipation rates, and the remaining colours correspond to logarithmically increasing 
dissipation rates, with pure red denoting the highest 0.1 YO of the dissipation rate 
values. 

The derivatives computed within each spatial data plane give the projection of the 
true three-dimensional scalar gradient vector VC(x,t)  into the data plane. As a 
consequence, the instantaneous local dissipation rate values obtained inherently 
underestimate the magnitude of the true dissipation rate when the scalar gradient 
vector has a significant out-of-plane component. However, the values obtained 
nevertheless provide an accurate picture of the structure of the true dissipation field. 
This will be the case except at relatively rare points where the gradient vector points 
almost precisely perpendicular to the imaging plane. In this sense, measurements such 
as these, involving only two space dimensions, are entirely adequate for a study of 
the structure of conserved scalar mixing in turbulent flows. Moreover, for a known 
distribution of scalar gradient vector orientations (e.g. under the assumption of 
isotropy), even statistical measures associated with the magnitude of the true 
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dissipation rate field can be correctly deduced from the present two-dimensional 
approximations (as described in 86.4). 

5.2. Structure 

The data in figures 7-13 allow the underlying structural features associated with the 
fine scales of the molecular mixing of Sc 9 1 conserved scalar fields in turbulent flows 
to be directly identified. As can be seen in the dissipation rate fields in part (b) of each 
figure, and even more clearly in the logarithmic forms in part (c),  the scalar dissipation 
rate field is organized into thin highly intertwined sheet-like strained laminar diffusion 
layers on which virtually all the dissipation is concentrated. The characterization of the 
fine-scale structure of the scalar dissipation rate fields as sheet-like (or ' layer-like ') 
stems from the fact that the basic structural features on which nearly all of the 
dissipation is concentrated typically maintain a planar topology for many local layer 
thicknesses. In other words, the local radius of curvature of these features is typically 
much larger than their local thickness. 

The fundamentally layer-like canonical fine-scale structure of the Sc % 1 scalar 
dissipation field seen in figures 7-13 contrasts sharply with the much wider range of 
fine-structure topologies seen in the vorticity field from DNS studies. In particular, as 
noted in $2, the vorticity magnitude field (0.0) is composed of a complex ensemble of 
line-like and sheet-like structures, as well as a milch wider range of more complex 
topologies that cannot be readily classified intc, r l l l lC i  _ _  .,ILSL Li+ C, liiiiiting structures, 
producing the notorious complexity of vorticity fields in turbulent flows. The fine 
structure of the scalar dissipation field (VC-VQ, on the other hand, can be seen from 
these results to be composed solely of a locally sheet-like topology. In this sense, the 
fine structure of the scalar gradient field in turbulent flows is considerably simpler than 
that of the underlying vorticity field, consisting of just a single well-defined canonical 
structural element. The reasons for this fundamental and far-reaching difference 
between the fine-structure topologies present in the vorticity and scalar gradient fields 
are examined in detail in $7. As a result of this difference, while models of the fine 
structure in the vorticity field are necessarily more complex, the fine structure of the 
scalar gradient field can apparently be modelled entirely on the basis of this 
comparatively simple locally sheet-like topology. These scalar dissipation sheets are of 
course stretched and folded by the underlying vorticity field into the highly intertwined 
patterns seen in figures 7-13, but apparently maintain their manifestly sheet-like 
structure. 

5.3. Magnitudes 

Notice also from the linear colour assignments for the scalar dissipatiw vdiueb in p. 
(h )  of these figures that high dissipation values occur only rarely and are clearly 
confined to easily identifiable sheet-like structures. Low dissipation values, cor- 
responding to blue colourings in these same figure panels, cover a much larger volume 
fraction of the flow but do not allow as clear an identification of their underlying 
topology. However, the logarithmic colour assignments used in part (c) of these figures 
clearly confirm that even these low dissipation rates are organized into sheet-like 
molecular diffusion layers. A quantitative assessment of the distribution of dissipation 
rates, including a correction that accounts for the missing gradient vector component, 
is given in $6. 

5.4. Similarity 

A feature of this sheet-like fine structure that can be seen, even if only qualitatively for 
the moment, from the logarithmic forms of the dissipation rate fields is that the internal 
profile of the scalar dissipation rates within each of these layers appears to be at least 
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roughly self-similar. Note that the magnitude of the scalar dissipation clearly varies 
along the length of any given layer (though apparently only rather slowly), and 
certainly varies between neighbouring layers in the same data plane and among layers 
in different data planes. However, the dissipation profiles across all of these layers 
nevertheless appear to have a similar internal shape. A quantitative assessment of the 
internal structure of these layers is presented in $7, as well as a comparison with the 
self-similar canonical solutions referred to in $ 2. 

5.5. Thicknesses 
It is also noteworthy that the thicknesses of the layer-like structures seen in these 
figures do not appear to vary over a very wide range. Some caution must be exercised 
in this observation, however, since the dissipation fields shown are obtained from the 
two-dimensional projection of the true gradient vector into the measurement plane. As 
a consequence, the out-of-plane component of the gradient vector is not accounted 
for in these data. The effect of this is that, if a thicker sheet-like structure were oriented 
largely tangent to the measurement plane, the two-dimensional dissipation obtained 
would appear to be very low, corresponding to blue values in the colouring scheme 
used. Since the lower dissipation rates corresponding to the tails of the normal profile 
across the sheet would then also be coloured blue, the apparent thickness of the layer 
might be very similar to that of a sheet oriented largely perpendicular to the 
measurement plane. A quantitative analysis of the distribution of the diffusion layer 
thicknesses, including a correction based on isotropy that accounts for these orientation 
anomalies, is given in Part 2, where the larger gradient lengthscale A, afforted by 
Sc z 1 allows for a more accurate determination. 

6. Statistics of the scalar and dissipation rate fields 
The conserved scalar measurements and the resulting scalar dissipation rate fields 

presented in $ 5 permit detailed analyses of various statistical measures of the molecular 
mixing process in turbulent flows. This section deals primarily with various probability 
distributions describing the scalar dissipation field. Many of these distributions serve 
to quantify various aspects of the fundamentally sheet-like structure of the dissipation 
field noted in the previous section. 

6.1. Cumulative distributions 
As was noted in figures 7-13, high dissipation rates occupy only a relatively small 
fraction of each measured data plane. To quantify this ‘spottiness’ of the dissipation 
field, figure 14(a) shows the fraction of the total data volume in which the local scalar 
dissipation rate is greater than some threshold value x, namely 

The is simply the cumulative distribution function for the scalar dissipation rate, 
c.d.f.(X). The rapid drop in the c.d.f.(X) at very low values of x reflects the fact that the 
scalar dissipation field is composed primarily of veiy low values, with high values 
occurring infrequently. The similarity of the results in figure 14(a) is assessed in figure 
14(b), where each curve is normalized with the corresponding measured median 
dissipation value xs0%. It can be seen that the different curves collapse reasonably well 
to a single and, presumably, quasi-universal curve. Moreover, as can be seen in table 
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FIGURE 14. (a) The cumulative distribution function c.d.f.(x) of scalar dissipation rates. (b) The 
cumulative distribution function of scalar dissipation rates after normalizing with the corresponding 
measured mean dissipation value xso./ .  Note the collapse onto a single curve which suggests that the 
distribution of scalar dissipation rates is similar for all the data volumes. 
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FIGURE 15. Comparison of measured mean X-values used in the normalizations with the predicted 
mean dissipation scalings from the outer-flow similarity laws for axisymmetric coflowing turbulent 
jets. 

A10279 
A09 130 
A 10070 
A10080 
A10110 

0.134 
0.319 
1 .00 
2.23 
2.50 

0.104 
0.225 
1 .oo 
2.03 
2.08 

0.100 
0.219 
1 .oo 
1.96 
2.05 

TABLE 3. Comparison of the measured and predicted mean dissipation rates 

3 and in figure 15, although the measured x5,,% values used in the normalizations in 
figure 14(b) vary over more than a factor of 20, they can be seen to agree quite well 
with the predicted mean dissipation scalings obtained from the outer-flow similarity 
laws in (4.6a, b) and (4.7). Figure 14(b) gives a quantitative indication of the spotty 
nature of the large Schmidt number scalar dissipation fields in turbulent flows. 

The integral in (6.1) quantifies how much of the measurement area is associated with 
a given rate of molecular mixing, but not how much of the mixing is occurring at a 
given rate. By comparison, the integral 
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FIGURE 16. ( a )  The cumulative distribution quantifying the fraction of the mixing occurring at a rate 
greater than some threshold value X .  (b)  The cumulative distribution shown in (a) after normalization 
with the corresponding mean X-values. The distributions of mixing rates for all the measurements are 
similar. 
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FIGURE 17. The normalized distribution of the two-dimensional scalar dissipation rates p.d.f.( x) 
obtained by differentiating the corresponding cumulative distribution functions. 

gives the fraction of the mixing occurring at a rate greater than some threshold 2. 
Figure 16 shows the results obtained for each case and verifies that the increasing 
mixing rates account for a sharply decreasing fraction of the total mixing. Moreover, 
note that this measure of the degree of internal intermittency becomes increasingly 
more compact with increasing outer-scale Reynolds number. These same curves, 
normalized by the mean x value, are shown in figure 16(b) where it can be seen that 
the total mixing in all cases consists of a very nearly self-similar distribution of mixing 
rates. The results in figures 14(b) and 16(b) allow determination of the fraction of the 
flow volume that accounts for any given fraction of the total mixing. Note, however, 
that these distributions still reflect the bias toward low dissipation values resulting from 
the gradient vector orientation relative to the two-dimensional measurement plane, as 
discussed in 5 5 .  These effects will be accounted for in following sections, and in $6.6 
the resulting spatial density of the true three-dimensional scalar dissipation rate fields 
is quantified. 

6.2. Probability densities 

The fact that the normalized cumulative distributions of the measured dissipation rates 
collapse to a single curve indicates that the associated probability density functions 
(p.d.f.s) will also be universal when normalized. The scalar dissipation rate p.d.f.s are 
obtained here by differentiating the corresponding cumulative distribution functions. 
Figure 17 shows the results obtained for p.d.f.(X) from each of the measurements in 
table 1, where the dissipation values for each case have been scaled by the median 
value. Note that, with the possible exception of one case, the results obtained all 
collapse to a single curve. Here the relative infrequency of high dissipation rates noted 
above manifests itself as a roughly log-normal density function. To assess the 
deviations from log-normality, figure 18 shows p.d.f.(logX). The dotted portion of the 
curve is an extrapolation of the range of dissipation rates accessible by these 
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FIGURE 18. The distribution of the logarithm of the two-dimensional scalar dissipation values p.d.f. 
(log, x) for one of the measurements. The two-dimensional scalar dissipation underestimates the true 
three-dimensional scalar dissipation, thus overpopulating the low end of the distribution. The dotted 
line is extrapolated as described in $6.2. 

measurements, obtained by a straight line connecting the last non-zero x value in the 
linear distribution (figure 17) to zero. 

In examining the result in figure 18, it must be kept in mind that the dissipation 
values shown are from two-component measurements of the true scalar gradient 
vector, and thus inherently underestimate the true dissipation rates. At least some of 
the sight asymmetry evident in figure 18 can be expected to be an artifact of this effect. 
In 6 6.4, this two-dimensional dissipation distribution will be corrected for the varying 
scalar gradient vector orientations and the corresponding true three-dimensional scalar 
dissipation probability density will be presented. 

6.3.  Small-scale anisotropy 
Small-scale isotropy is assessed here by testing if the measured scalar gradient vector 
field V<(x, t) shows any preferred orientation in its distribution P(I9,p) of the two 
spherical orientation angles. Here, I9 is the azimuth angle in the (x, y)-plane measured 
from the x-axis, and p is related to the elevation angle E from the (x,y)-plane as 
9; = in.-&. If the gradient vector is assumed to point with equal probability in all 
directions (i.e. the scalar gradient vector field is isotropic), then the joint p.d.f. of 19 
and q~ is given by 

(6.3) 
1 

P(8, p) = &sin 0. 

The projection of the gradient vector into any measurement plane will produce a 
uniform distribution of the azimuth angle I9 within that plane. The measured 
distribution of in-plane gradient vector orientation angles 9. for two typical data 
volumes are shown in figure 19. Notice that the spikes in these distributions occur at 
precisely regular intervals and with an extremely high degree of symmetry in their 
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FIGURE 19. (a) The distribution of scalar gradient orientation angles p.d.f.(9) for two measurement 
volumes. The curves are coincident, demonstrating that the peaks are an artifact of the discrete nature 
of the data and are therefore repeatable. (b) The distribution of scalar gradient orientation angles 
p.d.f.(9.) plotted to reveal the underlying structure. Here, 9. is measured from the downstream axis, 
so the higher values near k i n  directions correspond to layers oriented in the downstream direction (i.e. 
with their normal vector pointing in the radial direction). If the scalar gradient were isotropically 
oriented the distribution would be flat with a value of 1/(2n). 
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FIGURE 20. The three-dimensional p.d.f. of scalar dissipation rates obtained from the two- 
dimensional distributions (shown in figure 19) by the technique described by Dahm & Buch (1989). 
A Gaussian fit to the three-dimensional distributions is plotted for comparison. 

amplitudes. These artifacts are the result of any discrete differential operator, like that 
in (4. lo), being applied to the discrete 8-bit data and producing a finite and discrete set 
of possible azimuth angles. Accordingly, the locations, and even the relative 
amplitudes, of these spikes are consistent from one measurement to another. It is worth 
pointing out that the high degree of symmetry in figure 19 is at least partly a 
quantitative manifestation of the sheet-like fine-scale structure seen in the dissipation 
fields in $5 .  Since the dissipation field appears to consist essentially of locally one- 
dimensional layers with a symmetric internal structure, for every appearance of a 
V<(x , t )  with any particular value of 8 there will be a reflection through 7c on the 
opposite side of the sheet. This reflection will produce a p.d.f. displaying a period-7c 
symmetry in every detail. 

Ignoring for the moment the discrete character of the distributions in figure 19, if the 
underlying V<(x, t )  field were fully isotropic then the distribution of &values should 
appear uniform. Notice that the results obtained in figure 19(b) are, in fact, largely 
independent of 8, although an underlying small and roughly sinusoidal variation with 
maxima at approximately k i n  is discernible. This distribution corresponds to a very 
slight degree of anisotropy associated with a weak tendency for the dissipation layers 
to assume a preferred orientation relative to the principal strain axes of the mean flow. 
In particular, the mean flow has its principal compressive strain axis lying along 
9. = fn, with a small departure from this value due to the slow growth rate of the flow. 
Figure 19(b) shows that, whereas the scalar gradient field is very nearly isotropic, the 
gradient vector shows a slight preference to align with this most compressive strain 
axis. Based on the dynamics in (2.4), as well as classical arguments (e.g. Batchelor 
1959), this orientation is to be expected relative to the instantaneous principal strain 
axes. The consequences of this are discussed in $7. 
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FIGURE 21. Normalized distributions of the logarithm of 
the three-dimensional scalar dissipation rate. 

6.4. Three-dimensional dissipation distributions 
While it is fundamentally impossible to obtain the true instantaneous local scalar 
dissipation rate at any single point in the data volume from measurements spanning 
only two of the three spatial dimensions, it is noteworthy that the distribution of true 
dissipation rates can nevertheless be exactly obtained from such lower-dimensional 
measurements using the technique outlined by Dahm & Buch (1989) under the 
assumption of a known p ( 8 , ~ ) .  If, on the basis of results such as those in figure 21, the 
assumption of isotropy in the scalar gradient field is accepted, then the requisite p.d.f. 
is given by (6.3). Briefly, the central ideal is that each infinitesimal range of true X- 
values will produce a distribution of two-dimensional estimates of x corresponding to 
a given distribution of true scalar gradient vector orientations. The set of these 
distributions corresponding to each range of true X-values forms a linearly independent 
basis set, and thus the measured p.d.f. can be decomposed into the basis set and the 
true p.d.f.(X) reconstructed from the set of delta functions weighted by the 
corresponding linear coefficients. Numerically, this can be implemented as a marching 
procedure that starts from the high end of p.d.f.(X) and incrementally accounts for the 
area due to each small range of true X-values. 

The solid line in figure 20 shows the three-dimensional dissipation p.d.f. obtained by 
applying the above procedure to the measured two-dimensional distribution shown in 
figure 18. The dotted lines correspond to extrapolations of the linear distributions to 
x = 0. Also shown for comparison is the Gaussian curve for a precisely log-normal 
distribution having the same mean and variance as the three-dimensional result. Note 
that the correction removes much of the asymmetry seen in the two-dimensional 
distribution, but there is still a clear departure from log-normality. 

Figure 21 compares the corrected scalar dissipations p.d.f.s for each data volume. 
Note that, except for case A10279, all of the results collapse to a single and presumably 
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FIGURE 22. Distributions of conserved scalar values 5 normalized by the measured mean value 5,. 

universal distribution of true scalar dissipation rates. The one case which does not 
agree is that for which AT z A,/ U, as indicated in table 2. In that case, the relative time 
over which the data were collected was presumably too short for the statistics to 
converge. The departures from log-normality of the dissipation rate distributions 
apparent in figure 21 are, of course, directly connected with various statistical 
intermittency models of the type referred to in $2.2, and can be equivalently cast in 
terms of structure function exponents and the like. Here our interest is focused on 
noting that, despite the relatively low values of the Reynolds numbers, the dissipation 
distributions appear to have attained a largely Reynolds-number-independent form, 
further suggesting that the structure of the dissipation rate fields in figures 7-13 will 
change only little with increase in Re,. 

6.5. Joint probability densities 
Figure 22 shows the measured probability densities of the conserved scalar 6 
normalized by the measured mean value Cm. While the range of <-values collapses fairly 
well, the shape of the p.d.f.s clearly differs somewhat among these cases. Much of this 
appears attributable to the rather wide range of dimensionless downstream locations 
( x / 8 )  represented by the cases shown (see table l), since the shape of the p.d.f. changes 
as the flow undergoes the transition from jet-like similarity to wake-like similarity with 
increasing x /8 .  Indeed, there is a good correlation evident with x / 8  for all the cases 
having fully converged statistics (i.e. all except for A10279). However, at least some of 
the deviations may also be partly due to the comparatively larger uncertainty in the 
scalar field values than in the dissipation field values, owing to the beam attenuation 
effects discussed in $4.1. 

Of further interest beyond the individual probability densities p.d.f.(<) and 
p.d.f.(X), and especially in the modelling of turbulent reacting flows, is the joint 
distribution of conserved scalar and scalar dissipation, p.d.f.(c, x). Since the scalar and 
dissipation rate values are known simultaneously at every point in each data volume, 



Conserved scalar mixing in turbulent shear flows. Part I 55  

60 

40 
h W 

2 
X 

x: 
W 

20 

0 

h m 

5 
X 

x 
v 

0 1 2 3 4 

ifi, 
FIGURE 23. (a) The joint distribution of conserved scalar values and two-dimensional scalar 
dissipation rates for data set A09130. (b)  The joint distribution of conserved scalar values and three- 
dimensional scalar dissipation rates calculated from the distribution in (a). 

the joint distributions can be readily constructed. Figure 23 (a)  shows a typical result 
for the joint distribution p.d.f.(<, x), corresponding to case A09130, shown in figures 
8-10. Notice that, owing to the wide range of dissipation rates encountered, the 
contour levels shown increase logarithimically, with adjacent contours differing by 
factors of two. This distribution was computed using the measured two-component 
values of the scalar dissipation rate, and suggests that the scalar and dissipation values 
are largely statistically independent, namely p.d.f.(<, x) - p.d.f.({) p.d.f.( x). Each 
conditional two-dimensional scalar dissipation p.d.f. obtained from the joint 
distribution shown can be converted to the corresponding true, three-dimensional 
condition distribution following the procedure outlined in 9 6.4. These marginal 
distributions' can then be combined to produce the true three-dimensional joint 
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where dS and dl are, respectively, the differential surface area of E and the differential 
arclength along C. We have introduced the unit vector b = t x n, where t is the unit 
vector that is tangential to C and points in the counterclockwise direction when the 
interface is observed from the outside, as depicted in figure 18(a). The implementation 
of the finite-volume method for solving (A 7) over the triangulated interface of a 
deforming drop is discussed by Yon & Pozrikidis (1998). 

A.2. Axisymmetric interfaces 
The surfactant concentration evolution equation for an axisymmetric interface follows 
readily by considering the trace of the interface in the (x,y) azimuthal plane denoted 
as C, labelling marker points distributed along C with the curvilinear coordinate ul, 
and identifying u2 with the azimuthal angle v, as shown in figure 18(b). 

To develop the finite-volume formulation, we introduce the unit vector t that is 
tangential to C and points in the direction of increasing u l ,  denote the corresponding 
arclength as 1, and consider an interfacial element E with endpoints A and B, as shown 
in figure 18 (b). Performing the integration in the azimuthal direction analytically, we 
find that equation (A 7) reduces to 

This equation is the starting point for the numerical procedure discussed in $2. 

A.3. Two-dimensional interfaces 
The differential form of the surfactant concentration evolution equation for a two- 
dimensional interface in the (x, y)-plane follows readily after a straightforward change 
in notation. In this case, the marker points are labelled using the single curvilinear 
coordinate u l ,  as shown in figure 18(c). 

To implement the finite-volume formulation, we introduce the tangential unit vector 
along the interface t ,  pointing in the direction of increasing ul,  denote the corresponding 
arclength by 1, and consider an interfacial element E with end points A and B, as shown 
in figure 18(c). The counterpart of (A 7) is 

- j E T ~ u . n d l + D , ~ ) , - D , ~ )  A , (A 9) 

where K is the curvature of the trace of the interface in the (x,y)-plane. This equation 
is the starting point for the numerical procedure discussed in $2. 
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FIGURE 25. The two classes of local strain rate structures possible in a flow field where the coordinate 
frame remains aligned with the local instantaneous principal axes of the strain rate tensor: 
(a) g < 0 and (b) g > 0. 

essentially all the dissipation is concentrated, and having quantified various statistical 
features associated with these dissipation fields in $6, we now examine the internal 
structure of these scalar dissipation layers. We first review several features of the 
canonical solutions for the strain-diffusion balance that leads to the formation of these 
dissipation layers. Following this, in 4 7.4, we compare measurements of the internal 
structure of these layers with these simple idealized representations. 

I. 1. Characterization of the local strain rate field 
Viewing the local velocity field in a translating and rotating coordinate frame moving 
with any chosen material point in the flow, and remaining aligned with the local 
instantaneous principal axes of the strain rate tensor E = ~ ( V U  + VuT) ,  the local strain 
rate tensor can be represented by its principal strain rates cI1 2 cz2  3 e33 as 

E = (€11, €22, €33). (7.1) 
Continuity requiring ell +e22+e33 = 0 in turn requires ell 2 0 and E~~ 6 0, thus the 
strain rate tensor in (7.1) can be equivalently written as 

E =  %1(1,q, - ( 1 + 4 ) ,  (7.2) 
where g = c 2 2 / ~ l l  is a single parameter describing the structure of the local strain rate 
tensor, and ell simply characterizes the magnitude of the principal strain rate 
components. The latter serves only to rescale time in the local dynamics. As for the 
former, this structure parameter is bounded by -f 6 CT < 1, so two classes of local 
strain rate fields are possible, as shown in figure 25. The first, namely g > 0, 
corresponds to two extensional and one compressional principal strain axes. Local 
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FIGURE 26. The time evolution of the lengthscale A,. 

kinematic considerations (i.e. (2.4) and (2.5)) show that the deformations produced 
when CT > 0 will distort any material volume toward a sheet-like topology whose local 
gradient 05 will tend to align with the eigenvector for the most compressive principal 
strain rate ell, as shown in figure 25(b). On the other hand, when < 0 the local flow 
tends to deform a material volume into a line-like topology as indicated in figure 25(a), 
with Vc again tending to rotate toward the most compressive principal strain rate axis. 
Taking non-inertial effects to be negligible, exact local solutions of (2.1) and (2.2) are 
possible for limiting cases including o- = -f, 0, and 1, corresponding to locally 
axisymmetric and planar strain rate fields. These solutions produce the sheet-like and 
line-like topologies described by Burgers (1948, 1950) and Townsend (1951). A 
discussion of these strain-limited solutions for vortex ‘sheets’ and ‘lines’ in steady 
strain fields is given by Sherman (1990, pp. 155-156 and 564-567); see also Batchelor 
(1967, pp. 271-273). The extension to time-varying strain fields is given by Carrier, 
Fendell & Marble (1975, equations (4.1)-(4.4)). Here we also examine solutions and 
their implications for the local conserved scalar field structure and dynamics. 

7.2. Formation of line-like dissipative structures (CT = - f )  

For CT = -f ,  the extensionally strained vorticity component and conserved scalar must 
satisfy 

aw aw a z W  l a w  
-+(-ellr)--v -+-- = 2e,,w, 
at ar (arz  r a r )  

aL, a< a y  l a g  
-+(-ellr)--D -+-- = 0. 
at ar (arz r a,) 

Self-similar solutions of the form 

( 7 . 3 ~ )  

(7.3 b) 

(7.44 b) 
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where 

demand 

A2(t)  = exp( - ~ 2 r l l ( t ~ ) d t ’ ) ~ ~ + 2 v ~ e x p ~ ~ 2 e l l ( f - ) d t ~ ~ d f . ] .  0 0 (7.6) 

The result in (7.4) and (7.6) for the time evolution of the lengthscale A(t) characteristic 
of the local gradient scales in the vorticity and conserved scalar fields is shown in figure 
26. In particular, notice that regardless of the initial gradient lengthscale A,, at large 
times the competing effects of strain and diffusion reach an equilibrium at the strain- 
limited diffusion lengthscale A, - (v/e11)1/2, where the gradient scale A no longer 
changes explicitly with time, and instead is set by the strain rate ell. Furthermore, note 
that the response of these fields to a subsequent change in strain rate is a strain-imposed 
exponential decrease toward the new diffusion-limited equilibrium scale A, on a 
timescale set by ell if the initial lengthscale A, > A,, or conversely a diffusion- 
dominated square-root increase toward this same strain-limited equilibrium scale if 
A, < A,. Except for a short time of O(l/ell), the Lagrangian strain history is 
unimportant in setting the diffusion scale. Instead, the gradient lengthscale is largely 
dominated by the local strain-diffusion competition. 

When ell is of the order of the local outer-scale strain rate (u/6) ,  this equilibrium 
lengthscale becomes (h,/S) - Re;’/’ and corresponds to the local Taylor scale. On the 
other hand, when ell is of the order of the local inner-scale strain rate (u /6)  Re:”, the 
equilibrium lengthscale in (7.6) becomes (A,/&) - Rei314 and corresponds to the local 
Kolmogorov scale. 

The invariance in the circulation r of the resulting line-like vortical structure 
demands a Gaussian core for the vorticity in ( 7 . 4 ~ )  of the form 

1 F  

Self-similarity demands that the centreline conserved scalar value Cm(t) in (7.4 b) must 
decay exponentially with time as 

rt 
Cm --f exp -2 ell (t’) dt’. Jo 

This can be understood directly from conservation of the total amount of scalar, and 
demonstrates that, while such line-like structures can be indefinitely sustained in the 
vorticity field, no similar line-like structures can be maintained in the conserved scalar 
gradient field. As mentioned in 52.2, results from direct numerical simulations 
routinely show line-like structures in the vorticity field, while the results in figures 7-13 
show no evidence of such line-like structures in the scalar dissipation field. 

7.3. Formation of sheet-like dissipative structures (n = 0)  
For n = 0 and 1, (2.1) takes the form 

a2c -+(--el1n)--D- = 0. at an an2 (7.9) 

Self-similar solutions analogous to (7.4a, b)  demand that the gradient lengthscale A(t) 
in both the vorticity and scalar gradient fields must again satisfy (7.6) as in figure 26. 
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FIGURE 27. The variation in scalar dissipation with conserved scalar, x({) ,  from (7.14) with 
( { I , { - )  = (0, 1) for three different layer thicknesses A,. Compare with the general form the joint 
p.d.f. /I({, x) in figure 26. 

In this case, sheet-like structures can be indefinitely sustained in both the vorticity and 
scalar gradient fields. In the latter, two solutions are possible. The first corresponds to 
a scalar gradient region between two equal scalar boundary values <+ and c-, but the 
extremum scalar value must again decay exponentially as given in (7.8). The other case 
corresponds to a gradient sheet between two different scalar boundary values c + 4. 
In this case, {,(t) = +(<++ c) remains constant in time and the scalar field has an error- 
function profile along the local sheet-normal coordinate n given by 

( 7 . 1 0 ~ )  

h,(t) = h(t) sc-1’2, (7.10 b) 

where erf(f;) is the error function 

(7.11) 

For an isolated sheet-like scalar gradient structure of the type described by (7.6) and 
(7. lo), the corresponding scalar dissipation profile across the layer will be Gaussian, 
given by 

(7.12) 

Accordingly, the logarithm of the scalar dissipation will have an inverted parabolic 
profile of the form 

(7.13) 



Conserved scalar mixing in turbulent shear ~7ows.  Part 1 61 

From (7.10) and (7.12), the corresponding expression for x(<; <', A) is simply 

where err1([) is the inverse error function. Note that in (7.14) the characteristic 
gradient lengthscale A, acts only as a scaling constant, producing a family of curves 
that are all self-similar and scale as Ao2. Furthermore, in the equilibrium limit, where 
h - ( D / S ) ~ / ~ ,  the scalar dissipation scales linearly with the strain rate e. This function 
~ ( { ; h )  is shown in figure 27 for (<+,c) = ( 1 ,  0 )  and three different values of A, 
corresponding, in the equilibrium limit, to three different values of the strain rate e. 

Figure 27 gives an idea of the shape of the joint probability density function for the 
ideal canonical scalar interface and corresponding dissipation layers. The A-' scaling 
produces a family of curves that rapidly decrease in amplitude as h increases. Since the 
scalar value has a higher probability of being near the endpoints <+ and <-, the p.d.f. 
will have larger values near those values which correspond to x near zero. Therefore, 
the resulting joint p.d.f. will have contours that become more dense as x approaches 
zero. A comparison of this description with the joint p.d.f.s computed in $6.5 shows 
a strong qualitative agreement, supporting the assumption that the dissipation field can 
be modelled in terms of the canonical sheet-like dissipation structure. 

7.4. Comparisons with measurements 
Representative examples of the internal structure in the measured scalar and dissipation 
fields are presented in figure 28. These are enlarged views of fields such as those 
presented in $5, showing the shape of the respective profiles along an intersection 
through a scalar interface. Since gradients in the strain rate and vorticity occur over 
regions of O(Scli2) larger than A,, at large Schmidt numbers the strain field experienced 
by two adjacent interacting scalar gradient layers will be nearly the same. Therefore, 
their thicknesses should be nearly the same and they should be nearly parallel. 

Qualitative comparisons can be made in figure 28 with the error-function profile for 
the scalar field in (7.10), the Gaussian profile for the dissipation field in (7.12), and the 
parabolic profile for the logarithm of the dissipation field in (7.13). A qualitative and 
more objective numerical comparison, that covers most of the layers in these planes, 
can also be made. The first four moments of the layer-normal profiles were used to 
characterize their internal structure, from which we examine the skewness S and the 
kurtosis K corresponding to the internal layer structure. Each profile was clipped 
beyond the points where the scalar dissipation dropped below 20 % of the peak value 
in the .layer, and renormalized to unity area before computing the moments. For a 
Gaussian profile clipped in this manner, the skewness is zero and the kurtosis is 2.26. 
Moments of order higher than 4 were not examined, since these increasingly emphasize 
the structure in the tails of the profile, where the dissipation becomes small and 
interactions with neighbouring layers become significant. 

Figure 29 (a)  shows the distribution of skewness values obtained for varying 
numbers of data planes. Note that, since each data plane typically contains at least a 
few hundred layer profiles, the statistics from just a few temporally uncorrelated data 
planes converge rapidly. The strong peak near zero in figure 29(a) demonstrates that 
in general the layer are at least roughly symmetric about their mean. Figure 29(b) 
shows the distributions of kurtosis values for the same layers as in figure 29(a). Note 
the strong peak near the value of 2.26, suggesting that at least the central portion of 
the dissipation profiles is typically in good agreement with the simple canonical 
pictures described above. 
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FIGURE 28. Profile through a scalar interface in (a) the conserved scalar field, (b)  the scalar 
dissipation rate field and (c) the logarithm of the scalar dissipation rate field. 

If, on the basis of results such as those above, the scalar dissipation fields can be 
modelled as being composed entirely of isolated sheet-like strained laminar diffusion 
layers of the type in 57.3 between scalar values (c, c), then the distribution of scalar 
dissipation rates would be completely determined by just three parameters describing 
these layers. As noted in Appendix B, these parameters are the maximum dissipation 
value in the layer, the layer thickness, and the radius of curvature of the layer. Here, 
we only include the effect of layer maximum value, and from this compute a theoretical 
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FIGURE 29. (a) Distributions of skewness values of profiles through molecular diffusion layers. For 
a layer with a Guassian profile, the skewness is 0 since the profile is symmetric. (b) Distributions of 
kurtosis values of profiles through molecular diffusion layers. A Gaussian profile that has been 
clipped at the 20% point and renormalized has a kurtosis of 2.26. 

dissipation distribution. Figure 30 shows the distribution of the local maximum 
dissipation rate within the dissipation layers. Using this distribution and the procedure 
in Appendix B, the theoretical scalar dissipation rate distribution is shown in figure 3 1. 
Note the excellent agreement at the higher values of x. The discrepancies at the lower 
values are, at least in part, likely to result from interactions between layers and the fact 
that {* differ from (0, 1). 
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FIGURE 3 1. A comparison of the measured distribution of scalar dissipation rates and the predicted 
distribution obtained from the measured distribution of molecular diffusion layer maximum. 

8. Discussion and conclusions 
The results presented from this study offer detailed views the fine-scale structure of 

Sc 9 1 conserved scalar mixing in turbulent flows. These experimental measurements 
have yielded highly resolved data on the conserved scalar and scalar gradient fields, 
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which are not accessible to direct numerical simulations owing to the large Sc involved. 
The data provide a physical picture of the scalar field fine structure on the local inner 
scale of the flow. The outer-scale Reynolds numbers Re, in these experiments are 
believed to be high enough that at least the basic structure of the scalar dissipation field 
has attained its asymptotic high Reynolds number form. However, it seems unlikely 
that these Reynolds numbers are high enough for all of the details associated with this 
fine structure to have reached a strictly Reynolds-number-independent form. In this 
sense, the fine structure seen in these data is viewed as giving a correct indication of the 
high Reynolds number asymptotic state of turbulent mixing, but at least some 
quantitative details of the mixing process will likely still depend on the outer-scale 
Reynolds number. Evidence of this can be found in the fact that there does not appear 
to be any fundamental change in topology of the scalar dissipation fields, when viewed 
on inner variables, over the range of Reynolds numbers investigated, as well as in the 
similarity demonstrated on inner-scale variables by the various statistical quantities 
examined. 

Perhaps most noteworthy are the observations in $ 5  of a manifestly sheet-like 
topology in the scalar dissipation rate field that underlies the Sc % 1 mixing process at 
the small scales of turbulent flows. Unlike the vorticity field in turbulent flows, the 
scalar gradients are concentrated solely on sheet-like small-scale structures. The fine 
structure in the scalar gradient field is thus far simpler than that in the vorticity field. 
The apparent reason for this more restricted range of topologies in the scalar gradient 
field in comparison with the vorticity field was examined in $7 and can be traced to the 
dynamics summarized in $2.1. In effect, line-like structures in the scalar dissipation 
field must decay exponentially in time, but can be sustained indefinitely in the vorticity. 
Both fields can however sustain sheet-like structures. Thus as the local g(t)  in (7.2) 
changes, the vorticity field presumably undergoes a continual tendency to evolve 
between locally sheet-like and line-like topologies, whereas the scalar dissipation 
dynamics allow only the sheet-like structures to be sustained. Note that the insights 
into the fine structure of the scalar mixing in turbulent flows provided by these data 
also supports the fluid dynamic foundations of certain sheet-like conceptual models of 
reacting turbulent flows, such as the ‘flamelet’ models by Gibson & Libby (1972), 
Liew, Bray & Moss (1981), Peters & Williams (1983), Peters (1984), and Pope & Cheng 
(1988). 

A further point of interest which can be seen in figures 7-13 is the topology 
associated not only with the fundamental sheet-like structure of the individual 
dissipation layers themselves, but also the arrangement of these layers relative to one 
another. In particular, these figures show highly convoluted patterns into which the 
dissipation layers are kneaded by the continual stretching action of the strain field, the 
folding action due to differential rotations introduced by gradients in the vorticity field, 
and the continuous reorientation of the local principal strain rate axes. Among the 
range of dissipation layer patterns, several fundamental topologies can be identified. 
These include (i) long regions consisting of many straight and nearly parallel 
dissipation layers, (ii) areas where two such long regions meet nearly orthogonally, 
identifiable for example in figures 9(c) and 11 (b) where the dissipation layers adopt 
a pattern somewhat reminiscent of the streamlines in the classical stagnation point 
flow, and (iii) regions where the dissipation layers form a set of roughly concentric 
curved sheets suggestive of scalar interfaces wrapped around line-like vortical 
structures as seen in Kerr (1985). These topologies have a strong resemblance to the 
phase portraits in critical point theory (e.g. Ottino 1982, 1989), namely the simple 
shear, saddle, and centre (or whorl) portraits. While an analysis of these data in terms 
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of fixed and periodic points may be possible, for the present purpose we simply note 
that practically the entire dissipation field is composed of relatively few patterns, and 
this suggests possibilities for modelling the mixing process on these larger scales. 

Finally, it is noteworthy that both the sheet-like topology of the dissipation field and 
the large-scale arrangement of the dissipation layers are, at least qualitatively, similar 
to results obtained by Ottino (1982, 1989) for chaotic advection in asymptotically low 
Reynolds number flows. In that case, the continual reorientation of the principal strain 
axes leads to the formation of ‘striations’ in the scalar field that strongly resemble 
many of the features seen in the present turbulent flow data. Indeed, the key 
component in both cases appears to be the stretching and folding induced by the time- 
varying velocity gradient field. The overall similarity between these two flows suggests 
a degree of universality at the small scales that may extend across the Reynolds number 
boundaries traditionally associated with low Reynolds number chaotic mixing and the 
much higher Reynolds numbers in the turbulent flows examined here. 

Appendix A. Uncertainty estimates for scalar dissipation data 

rate field can be expressed in terms of the measured scalar field values <(xj, t )  as 
From the discrete template in (4.9), the values x(xi,  t )  in the scalar energy dissipation 

X = xi + X i >  
where 

with 
X A  X A ,  + X A ~ ,  X B  XB,  + X B , ,  

and 

and where to Q denote the eight pixels surrounding any given pixel in any data plane. 
Denoting the uncertainty in the measured scalar field values as crc, it is possible to 

quantify the uncertainty crx that results in the dissipation values using standard 
statistical methods (e.g. Bevington 1969). Note that for constants (a, b )  and variables 
(4  u),  if 

then the resulting uncertainties in p and q are 

p ~ a u f b v  and q = a u k b ,  (A 5 4  b)  

gi = a2rE + b2v,2 f 2 a b 4 ,  and crq = abu’b-lcr,, (A 6a,  b)  

where the variances g; = ( u ” )  denote the uncertainties in each of the variables and the 
covariances crLv = (u’u’) denote the uncertainty correlations between variables. Thus 
in (A 1) to (A 4),  if the noise statistics in all adjacent pixels are the same, then the 
variances gE in all the Ci will be the same, and if moreover the noise in adjacent pixels 
is independent then all the covariances will be zero. Consequently 

and 
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so finally 
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with the resulting fractional error in the dissipation being 

Normalizing on inner variables as in figures 7-13, where 

gives 

As noted in $4.4, the r.m.s. camera noise level is approximately 1 digital signal level, 
whereas the mean scalar value corresponds to approximately 80 levels, and thus 
(crC/Cm) z (1/80). In table 2 the in-plane pixel spacing A is typically 50 pm, and A, = 
A, ScliZ with Sc z 2000 and A, typically 150 pm. With these values, from (A 13) the 
fractional uncertainty in the normalized dissipation values can be obtained for any 
dissipation value. At the peak dissipation value of 84000 in figures 7-13 the resulting 
fractional uncertainty is (1/185), while near the mean value of 6000 the fractional 
uncertainty is (1/48). These can be compared with the fractional uncertainties of 
(1/256) at the peak measured scalar values and (1/80) at the mean scalar value. 

Appendix B. Scalar dissipation statistics from the distribution of layer 
maximum values 

The scalar dissipation field for Sc %- 1 seen in these measurements is almost entirely 
organized into thin sheet-like gradient regions. From this and the observation that the 
internal structure of these sheets is at least approximately Gaussian, it is possible to 
construct an idealized scalar dissipation distribution from the distribution of local 
sheet-normal maximum dissipation values. 

For a dissipation field composed of such sheets, with arbitrary widths and radii of 
curvature, the dissipation is zero everywhere except in the sheets, where 

(B 1) 
where xm is the layer maximum value, h is the measure of the thickness of the sheet, 
and n is the local sheet-normal coordinate. The probability that any measurement of 
the scalar dissipation rate x* is less than some threshold x can be expressed in terms 
of the probability of making that measurement at some location in the layer. It can be 
seen that 

x = X m  exp (- An2),  

P(x* < x) = P ( - n ,  < n* < -n)+P(n < n* < n,) (B 2 4  
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where n, defines the edge of the layer (where x = X ,  is some fraction of x,) and r is the 
local radius of curvature. The integration over 6 would be over that range of angles 
where the local radius of curvature of the layer is constant; however, this contribution 
cancels. 

Note that (B 2c) contains information about the local layer maximum, the local 
radius of curvature, and the thickness of the diffusion layers comprising the model 
scalar dissipation field. While all of these effects could be accounted for by determining 
the appropriate probability distributions, if it is assumed that the local radius of 
curvature Y is large compared to the width n, of the layers, then this simplifies to 

which only includes information about the local layer maximum value. Differentiating 
(B 3b) with respect to x gives the probability density of scalar dissipation values, 
conditioned on the layer maximum value as 

Equation (B 4), shown in figure 32, gives the distribution of scalar dissipation rates 
for a given layer maximum value. If the distribution of layer maxima is known, then 
the distribution of scalar dissipation rates can be determined by noting that only layers 
having a maximum greater than or equal to x will contribute, and then weighting with 
the probability that the layer maximum value will occur. Thus the probability density 
of scalar dissipation rates is 
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